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~ O J U ~ C K .  rnr psnaaic siarianary soiuiions o ia  model noniinear evoiuiion equaiion simu- 
lating the propagation of shortwave perturbations in a relaxing medium are studied. 
Solutions expressed by a multiple-valued function are shown to exist. A method far 
determining the nonlinear interaction between solitary waves is suggested. An example of 
a collision of solitons is given. 

.& a a  (;+ 2) U + U = 0 

It is possible to obtain this model equation describing the short-wave perturbations in 
a relaxing medium [I]  when the equations of motion are closed by the dynamic equation 
of state [2,3]. The variable U is the dimensionless pressure. In a relaxing medium, 
neglecting nonlinear effects, weak short waves obey the linear Klein-Gordon equation 
[4]. Taking account of nonlinearity caused by the wave propagation rate dependence 
on the amplitude leads, after certain transformations-factorization and shift in space 
with small perturbations velocity-to the equation (1). 

The equation under study is nonlinear and contains a purely dispersive term (this 

certain analogy with the Korteweg-de-Vries (Kdv) equation. Equation (1) and the Kdv 
equation have the same hydrodynamic nonlinearity, but different dispersion terms. 
This gives hope that (1) may at least partially possess the remarkable properties inherent 
to the Kdv equation, soliton solutions included. 

Equation ( I )  is related to that of Whitham [S, section 13.41 with a kernel K ( x )  =flxl 
[I], namely 

is by the &spersien re!atiec nf 8 !ine2:izcd eqaafiax (1) -p), is 2 

It should be noted the Whitham equation possesses interesting properties; in particular 
it describes solitary wave-type formations, has periodic solutions and explains the 
existence of the limiting amplitude [5j. An important property i s  the presence of 
conservation laws for waves decreasing rapidly at  infinity. 

We succeed in integrating ( I )  and finding the stationary solutions for travelling 
waves. The solution is looked for in the form 

u(x, I )  = u ( x - u t )  = u ( ’ I )  ’I = x - VI .  (3) 
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We thus pass from two independent variables to a single one, parameter U. Let us carry 
out calculations for waves decreasing rapidly at infinity. After substitution of (3) into 
(2) and one-fold integration we have 

(4) - v u  +p+ R U  + c = 0. 

By definition 

Making use of the fact that 

so that the following relation is valid 

and employing the operator d2/dv2 in (4) we get 

d2 
y (U -u)’+2u =o. 
d v  

This equation is obtained for waves decreasing rapidly at finity. However the same 
equation is valid also for periodic solutions. The integration in this case should be 
performed over the period of the solution [ 6 ] .  It should be noted that equation ( 5 )  
may be obtained from (1) by substituting (3). Then by writing z = U - U we reduce the 
above equation to the form 

d 
- zz’+ ( z +  U) = 0. 
d v  

The latter, being multiplied by zz’, is integrated as 

f (  ~ 2 ’ ) ~  = -42’ -fuzz+ c, 

The prime denotes, as usual, the derivative. The trinomial in the RHS is conveniently 
expressed in terms of its zeros a , ,  a, and a,. Thus 

f(zz’)’= -f(z - a,(z - az)(z - a3) ,  ( 6 )  

It is easy to verify that if there are complex roots the value z tends to minus infinity, 
and this contradicts the physical statement of the problem. Indeed, if we have only 
one real root, the graph of the function 

f ( z ) =  - f ( z - a 1 ) ( ~ - a 2 ) ( z - a 3 )  

composed of the RHS of ( 6 ) ,  crosses the z axis once. Thus as z +  fm we have f- --oO 

and as z -f -m we havef+ +m. But since the trinomial in the integration region should 
always be positive, as follows from the LHS of ( 6 ) ,  this region extends in z from minus 
infinity to the value of the single real root. This means the perturbation amplitude 
u = z + v  also tends to minus infinity, which does not correspond to the physical 
statement of the problem. So, all roots of the trinomial should be real. This requires 
that c, should be between iu3  and 0. For definiteness we shall assume that a, a 2 s  a’. 
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Since there is only one constant c1 a single root only can be chosen at one's discretion, 
say a,. The other roots are related via U by the formulae 

Then always the root U ,  E [ O , O S u ]  for U > 0 or U,  E [-U, - 1 . 5 ~ 1  for U <O. It follows 
from the above formula that always U ,  <O, and the root uz changes its sign depending 
on that of U. 

I I I C L G  arc L W V  L ~ S C S  io C V L I D ~ U C I ,  uic IUDL wcicili v x v  aiu aZ-.v aiiu LUG JCCVLW 

when u < O  and a2>0. The integration region of (6) is the interval (a2 ,  a,) on which 
f >  0. At the points z = a2 and z = a, the derivatives are zero. We integrate equation 
(6) to obtain 

---- "-- I... ~ ^ ^_^^ --..".A-- .l_^ C..". _..n ^ _ A  ,n "-A .L̂  "-",...A 

=Za,F('p, k ) / G + 2 \ l n , - n ,  E(?, k ) .  (7of 

Here F('p,  k), E ( q ,  k )  are incomplete elliptic integrals of the first and second kind, 
respectively, k =  J ( u , - u 2 ) / ( a 3 - a , )  and 

'p = sin-'J(u, - z ) / (u ,  - a > ) .  (76) 

The constant c, is determined by the initial phase of a wave profile; without loss of 
generality it may be set zero. The relations (7) give a parametric representation of z 
as a function of q in the form z = z('p), q = ~ ( ' p ) .  

For a wave moving with velocity U > 0 there exists a singularity at z = 0 (this point 
is in the integration region u 2 C z S a 3 )  where the derivatives z' go to infinity. In the 
vicinity of z = 0 the solution obeys the equation 

i.e. the integral curve passes over the ellipse centred on the line u = U. This testifies to 
the ambiguity of the functional dependence U = U( q ) .  Graphs of the amplitude U versus 
the coordinate q are given in figure 1. The solutions are periodic. Besides that, in 

C l  . I 
- C b  - 0 4  - 0 2  0 0 2  O L  06 0 0  1 0  1 2  

IlIG 
Figure 1. Stationary waves at U > 0. 
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certain regions they are ambiguous. The CUNeS are shaped as periodically repeated 
loops. For the limiting amplitude umax = 1.51~ (then c ,  = :U’) the periodic wave degener- 
ates into a solitary wave (curve 1 in figure 1). 

When the wave moves with velocity U < 0, the point z = 0 is not in the integration 
interval ( U * .  u3). The solution U = u ( v )  (figure 2) is always unambiguous. At small 
amplitudes the wave is transformed into a sinusoidal one with a period 2 7 4 4 .  As the 
maximum amplitude increases, the period decreases insignificantly. The wave profile 
is smooth if the limiting maximum amplitude is not attained. For a wave with limiting 
amplitude umax = 0.511~ the profile character undergoes changes. Curve 1 corresponding 
to this case consists of parabolas. At TJ =3m (this is a half-period) the function is 
sharp and the derivative d u / d q  = -m changes its sign. 

Figure 2. Periodic waves at v <O. 

Solitary waves exist only when u>O. In figure 1 this is shown by curve 1. The 
.formulae (7) expressing the parametric dependence of U on 7 are simplified in this 
case. Taking account of (3) the solution for solitary waves is written as 

2 x  u=$usech - 
2 6  

X x - v t = x - 3 6  tanh- 
2 J i  

The value x plays the role of the parameter in these dependences. 
The ambiguous solution can be given a physical interpretation. The wave perturba- 

tion destroys the thermodynamical equilibrium (the dynamical processes) while the 
interaction between particles of the medium aspires to restore this equilibrium (relaxa- 
tion processes). In the case considered the relaxation time is stow compared to the 
characteristic time of the wave field change, so that particles fail to interact one with 
another. Consequently particles with different thermodynamic characteristics will be 
in one microvolume. 

A study of the interaction between solitary waves with different U proves to be of 
interest. At the same time the ambiguity of the functional dependence U = U(X) for 
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one solitary wave imposes difficulties in a direct numerical integration of equation (1). 
The unambiguity of both functions (8) U and x of the parameter ,y proves to be helpful 
in advancing the solution of this problem. 

We consider the interaction between two solitary waves moving in the same direction 
with velocities uI and u2 ,  so that uI > u2. A solitary wave decreases exponentially at 
infinity. Let us dispose two waves in such a way that, at the initial time moment, the 
centre of one of them was at the point x, = 0 and the centre of the other was at x2 > 0, 
their interaction being negligibly small (x2/f ix 1). Before times when the waves 
produce mutual influence, the solution can be represented as a superposition of 
solutions and can be written in terms of one parameter p: 

U = U ]  i- u2 

- 3  2P-P2-u2t 
2 6  

- 2u2 sech 

2& 
x = p -3& tanh - 

2J;; 

It is clear that there is a relation x2 = p2-3(&+&) and at p = 0 we have x = x, = 0. 
Here it was taken into account that p2/&>> 1. 

It should be noted that we manage to choose the coordinates in which the initial 
equation is linear and thus the wave interaction is studied easily since it is a superposi- 
tion of two solutions. Such coordinates are 

d g = d x -  udt 7 = 1  (11) 

where equation (1) has the form 

$($U j + U  =o. 

Obviously, the solution for a single solitary wave in these coordinates takes the 
following parametric form: 

d ( = ( l -  U , / u I )  dp.  (14) 

Note that the functional dependence of U ,  on time r (13) has become unambiguous. 
The transformation (11) is analogous to the transition from Euler coordinates to 
Lagrange ones. Thus, the time is unambiguous for a particle. Certainly, this fact plays 
a positive role in solving the problem posed. It should also be noted that in (14) the 
dependence on dr vanishes. As (12) is linear the interaction between the waves U ,  and 
u2 is expressed as a superposition 

2 P - VI'+L 

2 6  
2 IJ -p2- 027 

2 4  
u = U,+ u 2 = $ u ,  sech - *u2 sech 
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through the parameter p. It remained to determine 6 and then x through p. It is easy 
to verify by direct substitution that if we put 

the linearity condition is satisfied, namely ” [” (U,+ U2)) +(U,+ UJ =o. ag a7  
In the relation (15) time is a parameter. The integration of (15) at fixed time taking 
into account (11) gives the dependence of x on p. In the coordinates x, I we have the 
solution 

2 P - U l f + l  

2 6  
2 w - P2 - U2* 

J;; u=$u, sech - 2u2 sech 

The constant xo for an arbitrary time f is determined by the condition x = p + 3 4  at 
x+-m. Thus, we obtained the solution as parametric dependences (16) on the 
parameter p, the functions obtained being unambiguous. 

The parametric solution (16) was computed for the case u2=0.5 0 , .  The solution 
is given in figure 3. For convenience of representation the observer moves relative to 
the initial system with constant velocity U = 0.5(u, + U*). The waves then move one onto 
another. The waves converge and become deformed. The solitary wave with smaller 
amplitude loses its form faster than the larger-amplitude solitary wave. The smaller 
wave is absorbed by the larger one. At the moment when the solitary waves are 
coincident the resulting wave is symmetric in the cordinate 7. When these solitary 

t” y - 
1 

Figure 3. Interaction between solitons uI and u2 = O S ” ,  
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waves are sufficiently far apart they have the form and velocity of the initial solitary 
waves. After the interaction the solitary wave with velocity U, is displaced backwards 
a distance 6 6  while the solitary wave with velocity u2 is displaced forwards a distance 
6 G .  These phaseshifts can also be obtained from equation (10). Indeed, at I = O  the 
centres of the waves were at points x, = O  and x2=p2-3(&+&) and at t >> 
p / ( u , - u 2 ) ,  as follows from( lo), x, = u,f -6&andx2= p2+ u2t+3(&-&),respec- 
tively. Consequently after the interaction the waves are shifted as mentioned above. 

At each of the solitary waves preserves its shape and velocity after interaction, each 
exhibits the distinguishing property of a soliton. We conclude that the solitary wave 
given by (8) is a soliton. 
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